
Ok, so first things first - cubic spline interpolation. You’re probably fine
with this bit, but I want to write it out to solidify the notation system I’m
using, otherwise it could be confusing.

• We have a set of points (xi, yi) such that

Si(xi) = yi, i = 0, ..., n (1)

S is our set of unknown spline functions - we know the set of n + 1
fixed points they must pass through, but not what the functions are.

• Since we have n + 1 points, we have n intervals, so n spline functions.
For each cubic spline, we will have four unknown coefficients, so in
total we get 4n unknown coefficients.

• We can set a certain number of conditions on our problem, to help
eliminate some of the unknowns. For example, with natural splines,
we know the second derivatives at the very end points must be zero,
ie

S′′(x0) = S′′(xn) = 0 (2)

• And we also know, because each spline needs to join with those pre-
ceding and following it, that

S′′i−1(xi) = S′′i (xi) (3)

(ie the function is not discontinuous in the second derivative at any
point).

• So for each spline equation, let the coefficients be (a, b, c, d). Then

Si(x) = ai + bix + cix
2 + dix

3 (4)

and obviously when x = xi

ai + bixi + cix
2
i + dix

3
i = yi (5)

Now, we also know Si(xi+1) = yi+1, ie

ai + bixi+1 + cix
2
i+1 + dix

3
i+1 = yi+1 (6)

So this gives us two equations for the coefficients. (Note that these
equations are simplified if we use the parameterisation seen in wolfram,
because then xi is equivalent to zero and xi+1 is equivalent to 1, so
both become simple linear equations). We need two more equations
to solve it properly, though!

1



• These next two come from our inflection conditions - the second deriva-
tive of the spline equations must match at each join point. So

S′′i (xi) = 2ci + 6dixi (7)

and
S′′i (xi+1) = 2ci + 6dixi+1 (8)

Now we have four equations for every segment except for the first and
last segments, and these two missing equations we obtain using our
conditions for a natural spline.

• So we arrange all these equations into a linear matrix equation. We
know the matrix on the left-hand-side (it’s the basic tridiagonal ar-
rangement). The right hand side will be a function of the known
solution points yi. The vector on the left hand side contains our un-
knowns. In the non-parameterized version, the unknowns di give us
the four coefficients in the following way:

ai =
di+1 − di

6h
(9)

bi =
1
2
di (10)

ci =
yi1 − yi

h
− di+1 + 2di

6
h (11)

di = yi (12)

where xi = xi−1. The parameterised version will look a little simpler
(which is one reason wolfram uses it), but is mathematically equivalent
since parameterising is equivalent to mucking around with h in the
manner above. If you use the parameterised version of the method,
then the relationship between the coefficients and the solutions to the
linear equation is as given in Wolfram. In any case, we find these
unknowns by now inverting the matrix, either directly or by using
gaussian elimination (and hence the streamlined gaussian elimination
applicable to tridiagonal matrices).

We can write the system as

Td = m (13)

2



where T is the tri-diagonal matrix which I can’t be bothered writ-
ing out, but consists of known integers ie see the bottom of this page
http://mathworld.wolfram.com/CubicSpline.html . m is a vector of knowns
which is derived from the fixed points yi, and d is our vector of unknowns,
which corresponds to the values of the first derivatives of the spline at the
junction points between the splines (so d is not actually the solution to the
problem, but it is very close to it - once you have d then getting the spline
coefficients is trivial). This notation clashes a bit with the page you linked
me to, sorry about that. Hopefully it’s clear.

This is a simple linear system, which can easily be solved using the stan-
dard gaussian elimination procedure, as I’m sure you know. The ’efficient’
method described here is just an algebraic formalization of the division and
subtraction procedures you would make normally - basically because the
matrix is regular and predictable, we can create an algorithm for the divi-
sion, subtraction and back-substitution. So it’s actually exactly the same
as a standard elimination method - you divide a row through by the first
co-efficient so your first unknown has a unity coefficient, and then you select
a suitable row to subtract from, etc., repeat. If you like I can go into more
detail on traditional Gaussian elimination, this might make things clearer.
The algorithm here is just filtering several elimination steps down into one,
and it can do that because the matrix has some predictable properties.

3


