Given a circle, centre $\left[x_{c}(t), y_{c}(t)\right]$, any point $\left[x_{s}, y_{s}\right]$ on its surface can be described by

$$
\begin{equation*}
\left(x_{s}-x_{c}(t)\right)^{2}+\left(y_{s}-y_{c}(t)\right)^{2}=q^{2} \tag{1}
\end{equation*}
$$

where q is the radius of the circle.
We want to find the time to impact on a line of known equation, given the information we had previously about the initial state of the ball, and the point of impact, previously defined as $\mathbf{k}=\left[k^{x}, k^{y}\right]^{\prime}$. At the impact point, the tangent slope to the circle is equal to the slope of the line \mathbf{k}, which we defined as s, so

$$
\begin{equation*}
\left(x_{s}-x_{c}(t)\right)=-s\left(y_{s}-y_{c}(t)\right) \tag{2}
\end{equation*}
$$

and we want the ball to hit the line, so from before,

$$
\left[\begin{array}{c}
x_{s} \tag{3}\\
y_{s}
\end{array}\right]=\left[\begin{array}{c}
k_{0}^{x}+k^{x} \\
k_{0}^{y}+s k^{x}
\end{array}\right]
$$

and we know the equations for $x_{c}(t), y_{c}(t)$, so

$$
\left[\begin{array}{l}
x_{c}(t) \tag{4}\\
y_{c}(t)
\end{array}\right]=\left[\begin{array}{c}
v_{0}^{x} t+x_{0} \\
\frac{1}{2} g t^{2}+v_{0}^{y} t+y_{0}
\end{array}\right] .
$$

And you could probably solve this by substitution. In fact, let's do that: Sub 2 into 1, so

$$
\begin{equation*}
k_{0}^{y}+s k^{x}-y_{c}(t)=\frac{q}{\sqrt{s^{2}+1}} \tag{5}
\end{equation*}
$$

Backsubstitute the right hand side into 2 and expand $x_{c}(t)$ to solve for k in terms of t :

$$
\begin{equation*}
k=\frac{-s q}{\sqrt{s^{2}+1}}+x_{0}+v_{0}^{x} t-k_{0}^{x} \tag{6}
\end{equation*}
$$

now substitute this into 1 again, expand $y_{c}(t)$ and solve for t :

$$
\begin{equation*}
t^{2} \cdot \frac{1}{2} g+t \cdot\left(v_{0}^{y}-s v_{0}^{x}\right)+q \sqrt{s^{2}+1}+y_{0}-s x_{0}-k_{0}^{y}+s k_{0}^{x}=0 \tag{7}
\end{equation*}
$$

... so we get a quadratic, which should give two values of t. Actually, there are up to four solutions, because of time symmetry - we only get two because I left out the \pm in equation 5 . So you need to solve the symmetrical quadratic obtained by using the negative solution to 5 to makes sure you get all the solutions. But that should be it.

