Ok, so we just have two dimension - a point mass moving in an x, y plane, y being downwards. Assuming only an impetus force (so there exists an initial velocity $\left[v_{0}^{x}, v_{0}^{y}\right]^{\prime}$), so no constant force acting on the mass apart from gravity, and using a unit mass, we can write the trajectory of the ball as

$$
\mathbf{r}_{B}(t)=\left[\begin{array}{c}
b_{1} t+b_{0} \tag{1}\\
\frac{1}{2} g t^{2}+c_{1} t+c_{0}
\end{array}\right]
$$

where b_{i}, c_{i} are equations which we can find using known initial conditions assuming the ball starts at $\left[x_{0}, y_{0}\right]^{\prime}$, then

$$
\begin{align*}
b_{0} & =x_{0} \tag{2}\\
b_{1} & =v_{0}^{x} \tag{3}\\
c_{0} & =y_{0} \tag{4}\\
c_{1} & =v_{0}^{y} \tag{5}
\end{align*}
$$

Then, if I'm viewing your code correctly, all you want is the intercept time with one of the defined lines? And presumably a point of intercept? Since the trajectory of the ball is parameterized by time, and the lines are straight (ie, for all the lines, y is parameterized by x), for each line you can just solve a pair of equations in two unknowns. Note that the trajectory $\mathbf{r}_{B}(t)$ will intersect a straight line in at most two points, but one of those points will lie in the past. So, specifically, let each line be written $\mathbf{k}=\left[k_{0}^{x}+k^{x}, k_{0}^{y}+s k^{x}\right]^{\prime}$, where $\left[k_{0}^{x}, k_{0}^{y}\right]^{\prime}$ is the origin of the line, and s is the slope. Then the two equations we have to solve are

$$
\begin{align*}
v_{0}^{x} t_{f}+x_{0} & =k_{0}^{x}+k^{x} \tag{6}\\
\frac{1}{2} g t_{f}^{2}+v_{0}^{y} t_{f}+y_{0} & =k_{0}^{y}+s k^{x} \tag{7}
\end{align*}
$$

for t_{f}, k^{x}. If the line is vertical, we know the x -coordinate of intersection (since it is constant along the line) and can just find the y by solving the first equation for t_{f}, then calculating the value of the left-hand side of the second equation gives us the y-coordinate. Otherwise we can just substitute and get a quadratic,

$$
\begin{equation*}
\frac{1}{2} g t_{f}^{2}+\left(v_{0}^{y}-s v_{0}^{x}\right) t_{f}+\left(y_{0}-k_{0}^{y}-s x_{0}+s k_{0}^{x}\right)=0 \tag{8}
\end{equation*}
$$

\ldots so if you do that for each line, then for any real solution t_{f}, the ball will cross the line in question at that time and point. You can just order the solutions for t_{f} (discarding imaginary/negative solutions) to find where the ball actually hits. Introducing more forces will complicate the quadratic, but it will still be a quadratic.

